\qquad
Review 2, No Calculator
Complete all the following on notebook paper. Folution follow A 1.
The point on the curve $x^{2}+2 y=0$ that is nearest the point $\left(0,-\frac{1}{2}\right)$ occurs where y is
(A) $\frac{1}{2}$
(B) 0
(C) $-\frac{1}{2}$
(D) -1
(E) none of the above

A 2.

If $f(x)=\frac{4}{x-1}$ and $g(x)=2 x$, then the solution set of $f(g(x))=g(f(x))$ is
(A) $\left\{\frac{1}{3}\right\}$
(B) $\{2\}$
(C) $\{3\}$
(D) $\{-1,2\}$
(E) $\left\{\frac{1}{3}, 2\right\}$

C 3.

The region bounded by the x-axis and the part of the graph of $y=\cos x$ between $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$ is separated into two regions by the line $x=k$. If the area of the region for $-\frac{\pi}{2} \leq x \leq k$ is three times the area of the region for $k \leq x \leq \frac{\pi}{2}$, then $k=$
(A) $\arcsin \left(\frac{1}{4}\right)$
(B) $\arcsin \left(\frac{1}{3}\right)$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{4}$
(E) $\frac{\pi}{3}$

C

If the function f is defined by $f(x)=x^{5}-1$, then f^{-1}, the inverse function of f, is defined by $f^{-1}(x)=$
(A) $\frac{1}{\sqrt[5]{x}+1}$
(B) $\frac{1}{\sqrt[5]{x+1}}$
(C) $\sqrt[5]{x-1}$
(D) $\sqrt[5]{x}-1$
(E) $\sqrt[5]{x+1}$

If $f^{\prime}(x)$ and $g^{\prime}(x)$ exist and $f^{\prime}(x)>g^{\prime}(x)$ for all real x, then the graph of $y=f(x)$ and the graph of $y=g(x)$
(A) intersect exactly once.
(B) intersect no more than once.
(C) do not intersect.
(D) could intersect more than once.
(E) have a common tangent at each point of intersection.

Bo

If y is a function of x such that $y^{\prime}>0$ for all x and $y^{\prime \prime}<0$ for all x, which of the following could be part of the graph of $y=f(x)$?

Bi
The graph of $y=5 x^{4}-x^{5}$ has a point of inflection at
(A) $(0,0)$ only
(B) $(3,162)$ only
(C) $(4,256)$ only
(D) $(0,0)$ and $(3,162)$
(E) $(0,0)$ and $(4,256)$
$E 8$
If $f(x)=2+|x-3|$ for all x, then the value of the derivative $f^{\prime}(x)$ at $x=3$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) nonexistent
C.

A point moves on the x-axis in such a way that its velocity at time $t(t>0)$ is given by $v=\frac{\ln t}{t}$. At what value of t does v attain its maximum?
(A) 1
(B) $e^{\frac{1}{2}}$
(C) e
(D) $e^{\frac{3}{2}}$
(E) There is no maximum value for v.

A10.

An equation for a tangent to the graph of $y=\arcsin \frac{x}{2}$ at the origin is
(A) $x-2 y=0$
(B) $x-y=0$
(C) $x=0$
(D) $y=0$
(E) $\quad \pi x-2 y=0$
11. $2000-\mathrm{AB} 6$

Consider the differential equation $\frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}}$.
(a) Find a solution $y=f(x)$ to the differential equation satisfying $f(0)=\frac{1}{2}$.
(b) Find the domain and range of the function f found in part (a).
12. 2001-AB4

Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer,
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?

Review 2
1.

$$
\begin{aligned}
& x^{2}+2 y=0 \\
& x^{2}=-2 y
\end{aligned}
$$

$$
\begin{aligned}
& d=\sqrt{(x-x)^{2}+(y-y)^{2}} \\
& d=\sqrt{(x-0)^{2}+(y+1 / 2)^{2}} \\
& d=\sqrt{x^{2}+y^{2}+y+4} \\
& d=\sqrt{-2 y+y^{2}+y+4} \\
& d=\sqrt{y^{2}-y+\frac{1}{4}} \\
& d^{\prime}=\frac{2 y-1}{2 \sqrt{y^{2}-y+\frac{1}{4}}} \\
& d^{\prime}=0 \quad y=\frac{1}{2} \quad \text { dne } y=\frac{1}{2} \\
& d^{\prime} 4-\frac{1}{1 / 2} \quad[A]
\end{aligned}
$$

2. $f(2 x)=\frac{4}{2 x-1} \quad g(4)=\frac{8}{x-1}$

$$
\begin{aligned}
\frac{4}{2 x-1}=\frac{2}{x-1} \Rightarrow 4 x-4 & =16 x-8 \\
4 & =12 x \\
x & =1 / 3 \square A
\end{aligned}
$$

$$
\begin{gathered}
\int_{-\frac{\pi}{2}}^{k} \cos x d x=3 \int_{k}^{\frac{\pi}{2}} \cos x d x \\
\sin k-\sin \frac{\pi}{2}=\left.3 \sin x\right|_{k} ^{\frac{\pi}{2}} \\
\sin k+1=3-\sin \frac{\pi}{2}-\sin k \\
4 \sin k=2 \\
\sin k-\frac{1}{2} \\
k=\frac{\pi}{6} \quad c
\end{gathered}
$$

4. $f(x)=x^{5}-1$
$x=y^{5}-1$
$y 5=x+1$
$y=\sqrt[5]{x+1} \quad 0$
5. A
6. inc and co B
7.

$$
\begin{aligned}
& y=5 x^{4}-x^{5} \\
& y^{3}=20 x^{3}-5 x^{4} \\
& y^{\prime}=60 x^{2}-20 x^{3}-20 x^{2}(3-x) \\
& y^{4}=0 \quad 4=0, \quad y^{2}+\frac{1+y}{3} \quad \square
\end{aligned}
$$

8. E] graph \rightarrow Hena ha coner as wi.
a. $v=\frac{\ln t}{t}$

$$
a=t(t)-\ln t, \frac{1-\ln t}{t^{2}}
$$

$$
a=0 \rightarrow \operatorname{l-in} t=0
$$

$$
m t=1
$$

$$
t=e
$$

a dne $t=0$

10. $y^{\prime}=\frac{\frac{1}{2}}{\sqrt{1-\frac{x^{2}}{4}}} \quad y^{\prime}(0)=\frac{1}{2}$

$$
y-0=\frac{1}{2}(x-0) A
$$

Consider the differential equation $\frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}}$.
(a) Find a solution $y=f(x)$ to the differential equation satisfying $f(0)=\frac{1}{2}$.
(b) Find the domain and range of the function f found in part (a).
(a) $e^{2 y} d y=3 x^{2} d x$
$\frac{1}{2} e^{2 y}=x^{3}+C_{1}$
$e^{2 y}=2 x^{3}+C$
$y=\frac{1}{2} \ln \left(2 x^{3}+C\right)$
$\frac{1}{2}=\frac{1}{2} \ln (0+C) ; \quad C=e$
$y=\frac{1}{2} \ln \left(2 x^{3}+e\right)$
[1: separates variables
1: antiderivative of $d y$ term
1: antiderivative of $d x$ term
1: constant of integration
1: uses initial condition $f(0)=\frac{1}{2}$
1: solves for y
Note: $0 / 1$ if y is not a logarithmic function of x

Note: $\max 3 / 6$ [1-1-1-0-0-0] if no constant of integration
Note: $0 / 6$ if no separation of variables
(b) Domain: $2 x^{3}+e>0$

$$
\begin{aligned}
& x^{3}>-\frac{1}{2} e \\
& x>\left(-\frac{1}{2} e\right)^{1 / 3}=-\left(\frac{1}{2} e\right)^{1 / 3}
\end{aligned}
$$

Range: $-\infty<y<\infty$
$3\left\{\begin{aligned} 1: & 2 x^{3}+e>0 \\ 1: & \text { domain } \\ & \text { Note: } 0 / 1 \text { if } 0 \text { is not in the domain } \\ 1: & \text { range }\end{aligned}\right.$

Note: $0 / 3$ if y is not a logarithmic function of x

AP ${ }^{\circledR}$ CALCULUS AB 2001 SCORING GUIDELINES

Question 4

Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?
(a) $h^{\prime}(x)=0$ at $x= \pm \sqrt{2}$

Local minima at $x=-\sqrt{2}$ and at $x=\sqrt{2}$
(b) $h^{\prime \prime}(x)=1+\frac{2}{x^{2}}>0$ for all $x \neq 0$. Therefore, the graph of h is concave up for all $x \neq 0$.
(c) $h^{\prime}(4)=\frac{16-2}{4}=\frac{7}{2}$
$y+3=\frac{7}{2}(x-4)$
(d) The tangent line is below the graph because the graph of h is concave up for $x>4$.
$4:\left\{\begin{array}{l}1: x= \pm \sqrt{2} \\ 1: \text { analysis } \\ 2: \text { conclusions } \\ \quad<-1>\text { not dealing with } \\ \quad \text { discontinuity at } 0\end{array}\right.$
$3:\left\{\begin{array}{l}1: h^{\prime \prime}(x) \\ 1: h^{\prime \prime}(x)>0 \\ 1: \text { answer }\end{array}\right.$

1 : tangent line equation

1 : answer with reason

